[알고리즘] 점근표기법, asymptotic notation | 상한, 하한, 교집합
점근 표기법(asymptotic notation)은 시간 복잡도 또는 공간 복잡도 함수의 증가 양상을 구분하기 위해 사용하는 표기법이다. 대표적으로 상한(O), 하한(Ω), 교집합(Θ)이 있다. 먼저 간략하게 뜻을 말하면 아래와 같다. O(f(n)) : 상한, 아무리 느려봤자 f(n) 정도이다. f(n)보다 빠르거나 같다. Ω(f(n)) : 하한, 아무리 빨라봤자 f(n) 정도이다. f(n)보다 느리거나 같다. Θ(f(n)) : 차수, 상한과 하한을 함께 제시. 두 집합의 교집합 하나 하나 알아보기전에, 앞서 말한 '빠르다', '느리다'라는 표현에 대해 그 뜻을 정리할 필요가 있다. 함수의 차수가 높을수록 더 빠를 것 같지만, 차수가 낮은 것이 더 빠르다고 표현한다. 즉, 그래프 상으로 그렸을 때 더 아..
단축키
내 블로그
내 블로그 - 관리자 홈 전환 |
Q
Q
|
새 글 쓰기 |
W
W
|
블로그 게시글
글 수정 (권한 있는 경우) |
E
E
|
댓글 영역으로 이동 |
C
C
|
모든 영역
이 페이지의 URL 복사 |
S
S
|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.