알고리즘/<4> The Greedy Approach (5) 썸네일형 리스트형 [알고리즘] 다익스트라 알고리즘, Dijkstra's Algorithm | 설계 및 분석, 구현코드 다익스트라 알고리즘은 가중치가 있는 방향성 그래프에서 한 특정 정점에서 다른 모든 정점으로 가는 최단경로를 구하는 문제이다. 앞서 살펴본 프림 알고리즘, 크루스칼 알고리즘과 마찬가지로 최단 경로를 구하는 문제이며 그래프를 사용한다는 점에서 공통점이 있지만 다익스트라 알고리즘은 Minimum Spanning Tree를 구하는 문제가 아니라는 점에서 차이가 있다. 아래의 수도코드를 보면 프림 알고리즘의 수도코드와 유사하다는 것을 알 수 있지만, 이미 방문한 집합 V-Y에서부터 정점 v까지의 최단거리를 선택하는 프림 알고리즘과 달리 다익스트라 알고리즘은 출발점부터 정점 v까지의 최단거리를 구한다. 수도코드(high level) F:=∅ Y:={v1}; while(the instance is not solved.. [알고리즘] 크루스칼 알고리즘, Kruskal's Algorithm | 설계 및 구현코드 크루스칼 알고리즘은 프림 알고리즘과 달리 한 정점이 locally optimal한지 결정할 때 단순히 edge의 가중치를 기준으로 결정한다. 즉, edge의 가중치가 작으면 작을수록 locally optimal한 것이다. 가중치가 작은 것 부터, 즉 유리한 것 부터 먼저 담으려는 크루스칼 알고리즘의 의도가 참 말그대로 'Greedy' 해보인다. 하지만 크루스칼 알고리즘이 대책없이 edge들을 마구마구 담아대는 것은 아니다. 순환 경로가 발생하지 않도록 정점들의 관계를 검사하는 작업을 치른다. 이 과정에 대해 더 자세히 알아보도록 하자. 수도코드(high level) F := ∅; //edge의 집합 초기화 create disjoint subsets of V, one for each vertex and c.. [알고리즘] 프림 알고리즘, Prim's Algorithm | 설계 및 분석 프림 알고리즘의 locally optimal의 기준은 이미 방문한 정점들의 집합 Y에서부터 방문한 적이 없는 한 정점까지의 거리이다. 즉, 방문한 적이 없는 정점들 중 출발점과의 거리가 가장 가까운 정점부터 선택한다는 것이다. 이 과정을 간단한 수도코드와 그림으로 나타내면 다음과 같다. 수도코드(high level) F := ∅; //edge의 집합 Y := {v1}; //vertex의 집합, 출발점을 포함한 상태로 시작 while(the instance is not solved) { select a vertes in V-Y that is nearest to Y; //selection procedure, feasibility check add the vertex to Y; add the edge to F.. [알고리즘] 최소비용 신장트리, Minimum Spanning Tree greedy approach를 신장트리로 시각화할 수 있다. 신장트리는 정점이 서로 연결되어있고 방향이 없는 그래프에서 순환 경로가 없도록 엣지를 제거하되 모든 정점이 그래프에 포함되도록 연결한 부분 그래프이다. 여기서 비용이 최소가 되도록 연결한 그래프(신장트리)를 최소비용 신장트리라고 한다. 글로만 읽으면 무슨 말인지 이해가 잘 안될테니 그림으로 이해해보자. 아래 그림은 신장트리의 한 예를 보여준다. 위 그림의 신장트리가 과연 최소신장트리일까? 오른쪽의 신장트리가 왼쪽의 그래프에서 도출될 수 있는 그래프들 중 비용이 가장 적은 그래프일까? 그렇지 않다. 비용이 더 작은 엣지들을 사용해서도 충분히 모든 정점들을 이으면서 순환 경로가 없도록 그래프를 만들 수 있다는 것을 알 수 있다. 하지만 이는 위의 .. [알고리즘] 탐욕 알고리즘, The Greedy Approach 미래의 결과를 예측할 수 없는 상황에서 지금 내가 할 수 있는 최선의 결정은 무엇일까? 매 선택마다 그 순간에 가장 좋다고 생각되는 것을 선택하는 것이다. 즉, 그 순간에 가장 좋다고 생각되는 것을 선택함으로써 최종적인 해답에 도달한다. 매 순간 가장 좋다고 생각되는 것을 선택하면 그것이 궁극적으로도 최적이 될 수도 있기 때문이다. 이러한 원리의 접근방식이 바로 Greedy Approach이다. 하지만 이는 미래를 고려하지 않고 단지 그 순간에서의 optimal한 것을 선택한 것이므로, 그 해답이 궁극적으로 optimal라는 보장이 없다. 따라서 최적의 해답을 주는 알고리즘인지 검증하는 과정이 반드시 필요하다. 따라서 Greedy Approach 알고리즘의 구성은 다음과 같다. ① 선택 절차, selec.. 이전 1 다음